Teď jste offline a čekáte, až se znova připojí internet.

Statistické funkce aplikace Excel: funkce BINOMDIST

DŮLEŽITÉ: Tento článek je přeložen pomocí softwaru na strojový překlad Microsoft. Nepřesný či chybný překlad lze opravit prostřednictvím technologie Community Translation Framework (CTF). Microsoft nabízí strojově přeložené, komunitou dodatečně upravované články, a články přeložené lidmi s cílem zajistit přístup ke všem článkům v naší znalostní bázi ve více jazycích. Strojově přeložené a dodatečně upravované články mohou obsahovat chyby ve slovníku, syntaxi a gramatice. Společnost Microsoft není odpovědná za jakékoliv nepřesnosti, chyby nebo škody způsobené nesprávným překladem obsahu nebo jeho použitím našimi zákazníky. Více o CTF naleznete na http://support.microsoft.com/gp/machine-translation-corrections/cs.

Projděte si také anglickou verzi článku: 827459
Souhrn
Tento článek popisuje funkce BINOMDIST v aplikaci Microsoft Office Excel 2003 a vyšších verzích aplikace Excel, ilustruje způsob použití funkce a porovnává výsledky této funkce v aplikaci Excel 2003 a vyšších verzích aplikace Excel s výsledky dřívějších verzích aplikace Excel.

Aplikace Microsoft Excel 2004 for Mac informace

Statistické funkce v aplikaci Excel 2004 for Mac byly aktualizovány pomocí stejných algoritmů, které byly použity k aktualizaci statistických funkcí v aplikaci Excel 2003 a vyšších verzích aplikace Excel. Veškeré informace v tomto článku, které popisují fungování nebo jak byla upravena pro aplikaci Excel 2003 a vyšších verzích aplikace Excel platí také pro aplikaci Excel 2004 for Mac.
Další informace
Při Kumulativní = PRAVDA, funkce BINOMDIST (x, n, p, Kumulativní) funkce vrátí pravděpodobnost x nebo méně úspěšných n nezávislé Bernoulliho pokusů. Každé hodnocení má odpovídající pravděpodobnosti výskytu p Úspěch (a pravděpodobnost 1-p selhání). Při Kumulativní = NEPRAVDA funkce BINOMDIST vrátí pravděpodobnost přesně x úspěchy.

Syntaxe

BINOMDIST(x, n, p, cumulative)

Parametry

  • x je bez negativeinteger
  • n je Kladné_celé_číslo
  • 0 p <>
  • Kumulativní je logické variablethat bere na hodnoty PRAVDA a NEPRAVDA

Příklad použití

Proveďte následující předpoklady:
  • V baseballu, ".300 hitter" přístupů (úspěšné) withprobability 0.300 pokaždé, když přichází do bat (každý zkušební).
  • Po sobě jdoucích časy v bat jsou nezávislé Bernoullitrials.
Můžete použít následující tabulku k nalezení pravděpodobnost, že takové těstíčko získá přesně 0, 1, 2,..., nebo dopadne 10 10 pokusů a pravděpodobnost, že těstíčko získá 0, 2 1 nebo méně nebo méně,..., 9 nebo méně, nebo 10 nebo méně přístupů do 10 pokusů.

Těstíčko získá 50 přístupů v jeho prvních 200 hodnocení (.250 průměr), si musí nechat 100 přístupů v jeho hodnocení dalších 300 150 přístupů a.300, průměrné hodnocení více než 500. Následující tabulka slouží k analýze šance, aby těstíčko získá dostatečné přístupy k zachování jeho průměrné. Baseball commentators často počátku "zákon o průměrů", když slibují fanouškům nemusí starat o výkon této těstíčko s pouze 50 přístupů v jeho prvních 200 hodnocení, protože "do konce sezóny bude jeho průměrné. 300." Pokusy byly skutečně nezávislá a těstíčko 0,3 šancí na úspěch skutečně měla na každého jednoho pokusu, stejná Argumentace je fallacious, protože výsledky zkoušek prvních 200 nemají vliv na úspěch nebo selhání přes poslední 300 pokusů.

Pro ilustraci použití funkce BINOMDIST, vytvořte prázdný list aplikace Excel, zkopírujte následující tabulku, vyberte v listu aplikace Excel prázdné buňky A1 a vložte položky tak, aby vyplnil v následující tabulce A1:C22 buněk v listu.
počet pokusů10
pravděpodobnost úspěchu0,3
úspěchy, xP (přesně x úspěchů)P (x nebo méně úspěchů)
0=BINOMDIST(A4,$B$1,$B$2,FALSE)=BINOMDIST(A4,$B$1,$B$2,TRUE)
1=BINOMDIST(A5,$B$1,$B$2,FALSE)=BINOMDIST(A5,$B$1,$B$2,TRUE)
2=BINOMDIST(A6,$B$1,$B$2,FALSE)=BINOMDIST(A6,$B$1,$B$2,TRUE)
3=BINOMDIST(A7,$B$1,$B$2,FALSE)=BINOMDIST(A7,$B$1,$B$2,TRUE)
4=BINOMDIST(A8,$B$1,$B$2,FALSE)=BINOMDIST(A8,$B$1,$B$2,TRUE)
5=BINOMDIST(A9,$B$1,$B$2,FALSE)=BINOMDIST(A9,$B$1,$B$2,TRUE)
6=BINOMDIST(A10,$B$1,$B$2,FALSE)=BINOMDIST(A10,$B$1,$B$2,TRUE)
7=BINOMDIST(A11,$B$1,$B$2,FALSE)=BINOMDIST(A11,$B$1,$B$2,TRUE)
8=BINOMDIST(A12,$B$1,$B$2,FALSE)=BINOMDIST(A12,$B$1,$B$2,TRUE)
9=BINOMDIST(A13,$B$1,$B$2,FALSE)=BINOMDIST(A13,$B$1,$B$2,TRUE)
10=BINOMDIST(A14,$B$1,$B$2,FALSE)=BINOMDIST(A14,$B$1,$B$2,TRUE)
pravděpodobnost úspěchu 0,3 300 testů:
úspěchy, xP (přesně x úspěchů)P (x nebo méně úspěchů)
89=BINOMDIST(A18,300,0.3,FALSE)=BINOMDIST(A18,300,0.3,TRUE)
90=BINOMDIST(A19,300,0.3,FALSE)=BINOMDIST(A19,300,0.3,TRUE)
99=BINOMDIST(A20,300,0.3,FALSE)=BINOMDIST(A20,300,0.3,TRUE)
100=BINOMDIST(A21,300,0.3,FALSE)=BINOMDIST(A21,300,0.3,TRUE)
101=BINOMDIST(A22,300,0.3,FALSE)=BINOMDIST(A22,300,0.3,TRUE)
Poznámka: Po vložení této tabulky do nového listu aplikace Excel, klepněte na tlačítko Možnosti vložení a potom klepněte na příkaz Přizpůsobit formátování cíli. Stále vybraný vložený rozsah použijte jeden z následujících postupů v závislosti na verzi aplikace Excel, kterou používáte:
  • V aplikaci Microsoft Office Excel 2007 klepněte na kartě Domů klepněte na tlačítko Formát ve skupině buňky a potom klepněte na tlačítko Přizpůsobit šířku sloupců.
  • V aplikaci Excel 2003 a v dřívějších verzích aplikace Excel v nabídce Formát přejděte na příkaz sloupec a klepněte na příkaz Přizpůsobit.
Chcete formátovat buňky B4:C22 pro konzistentní čitelnosti (například formát čísla na pět desetinných míst).

B4:B14 buňky zobrazit pravděpodobností přesně x úspěšných pokusů 10. Nejpravděpodobnější počet úspěchů je 3. Šance na 0, 6, 7, 8, 9 nebo 10 úspěšných každý méně než 0,05 a přidat o 0.076. Takže šance na 1, 2, 3, 4 nebo 5 úspěchů je asi 1 – 0.076 = 0.924. Buňky C4:C14 zobrazit pravděpodobností x nebo méně úspěšných pokusů 10. Můžete zkontrolovat položky ve sloupci C v některém řádku se rovná součtu všech položek ve sloupci B, dolů do a včetně tohoto řádku každého.

B18:B20 ukazují, že nejpravděpodobnější počet úspěšných pokusů 300 je 90. Pravděpodobnost přesně x zvýšení úspěchů jako x zvyšuje na 90 a potom sníží jako x i nadále vylepšuje vyšší než 90. Pravděpodobnost 90 nebo méně úspěchů je něco přes 50 %, jak ukazuje C20. 0.884 je pravděpodobnost 99 nebo méně úspěšné. Proto existuje pouze 11.6 % pravděpodobnost (0.116 = 1 – 0.884) 100 nebo více úspěchů.

Výsledky ve starších verzích aplikace Excel

Knusel (viz poznámka 1) zdokumentována instance, kde funkce BINOMDIST číselnou odpověď nevrátí a výsledkem #NUM! místo z důvodu numerické přetečení. Pokud funkce BINOMDIST vrátí číselný odpovědi jsou správné. Funkce BINOMDIST vrátí hodnotu #NUM!. pouze pokud počet pokusů je větší než nebo rovno 1030. Pokud neexistují žádné výpočetní problémy n < 1030.="" in="" practice,="" such="" high="" values=""> n je nepravděpodobné, že. S takovým vysoký počet nezávislých pokusů může uživatel chtít binomické rozdělení aproximovat normálním rozdělením (je-li n*p a n* (1-pjsou dostatečně vysoké), například, každý je větší než 30), nebo jinak distribuční funkce Poissonova rozdělení.

Poznámka: 1 Knusel L. "na přesnost statistických rozúčtování v aplikaci Microsoft Excel 97", výpočetní statistiky a analýzy dat (1998), 26: 375-377.

Pro-kumulativní případu, (funkce BINOMDISTx, n, pfalse) používá následující vzorec
COMBIN(n,x)*(p^x)*((1-p)^(n-x))
Funkce aplikace Excel, která udává počet kombinací je kombinace x položky v populaci n položky. KOMBINACE)n,x) je někdy napsán nCxs názvem "combinatorial koeficientem" a just, "n Zvolte x". Je-li vyzkoušet kombinace zadáním =COMBIN(1029,515) v jedné buňce a =COMBIN(1030,515) v jiné buňce na první buňku vrátí astronomical číslem, 1.4298E + 308 a druhou buňku vrátí hodnotu #NUM!. vzhledem k tomu, že je ještě větší. Přetečení kombinace způsobuje přetečení z funkce BINOMDIST v dřívějších verzích aplikace Excel.

KOMBINACE nebyla změněna v aplikaci Excel 2003 a vyšších verzích aplikace Excel.

Výsledky v aplikaci Excel 2003 a vyšších verzích aplikace Excel

Protože Microsoft má diagnostikováno při přetečení způsobí, že funkce BINOMDIST vrátit #NUM! a ví, že funkce BINOMDIST dobře behaved při přetečení nedochází, Microsoft provedla implementaci algoritmu podmíněné v aplikaci Excel 2003 a vyšších verzích aplikace Excel.

Tento algoritmus používá při BINOMDIST kódu z předchozích verzí aplikace Excel (výpočetní vzorec uvedený výše v tomto článku). n < 1030.=""> n > = 1030, Excel 2003 a vyšších verzích aplikace Excel použít alternativní algoritmus, který je popsán dále v tomto článku.

Obvykle kombinace přetéká, protože je astronomical, ale p^x (1- ap)^(n-x) jsou jednotlivé infinitesimal. Kdyby možná vynásobily dohromady, produkt by reálné pravděpodobnosti mezi 0 a 1. Nicméně vzhledem k tomu, že stávající aritmetické omezené nelze vynásobily, alternativní algoritmus vyhýbá hodnocení kombinace.

Přístupu společnosti Microsoft přesně vypočítá součet všech pravděpodobností bez měřítka x úspěchy, které jsou později použít pro účely změny měřítka. Také se vypočte hodnotu bez měřítka pravděpodobnosti má funkci BINOMDIST lze vrátit. Nakonec používá měřítko k vrácení správné hodnoty funkce BINOMDIST.

Algoritmus využívá skutečnosti, že poměr mezi po sobě jdoucích podmínek (kombinace formulářen,k)*(p^k)*((1-p)^(n-k)) má jednoduchý formulář. Algoritmus pokračuje, jak je popsáno v pseudokódu v následujících krocích.

Krok 0: (Inicializace). Inicializace TotalUnscaledProbability a vlastnosti UnscaledResult na hodnotu 0. Inicializujte konstantní EssentiallyZero velmi malé číslo, například 10^(-12).

Krok 1: vyhledání n*p a zaokrouhlit dolů na nejbližší celé číslo. m. Nejpravděpodobnější počet úspěšných n pokusy je buď m nebo m+ 1. KOMBINACE)n,k)*(p^k)*((1-p)^(n-kZmenší)) jako k snížení z m Chcete-li m-1 k m-2 a tak dále. Také kombinace)n,k)*(p^k)*((1-p)^(n-kZmenší)) jako k zvýší ze m+ 1 m+ 2 k m+ 3 a tak dále.
TotalUnscaledProbability = TotalUnscaledProbability + 1;If (m == x) then UnscaledResult = UnscaledResult + 1;If (cumulative && m < x) then UnscaledResult = UnscaledResult + 1;
Krok 2: Výpočet pravděpodobností bez měřítka pro k > m:
PreviousValue = 1;Done = FALSE;k = m + 1;While (not Done && k <= n)  {	CurrentValue = PreviousValue * (n – k + 1) * p / (k * (1 – p));	TotalUnscaledProbability = TotalUnscaledProbability + CurrentValue;	If (k == x) then UnscaledResult = UnscaledResult + CurrentValue;	If (cumulative && k < x) then UnscaledResult = UnscaledResult + 		CurrentValue;	If (CurrentValue <= EssentiallyZero) then Done = TRUE;	PreviousValue = CurrentValue;	k = k+1;  }end While;
Krok 3: Výpočet pravděpodobností bez měřítka pro km:
PreviousValue = 1;Done = FALSE;k = m - 1;While (not Done && k >= 0)  {	CurrentValue = PreviousValue * k+1 * (1-p) / ((n – k) * p);	TotalUnscaledProbability = TotalUnscaledProbability + CurrentValue;	If (k == x) then UnscaledResult = UnscaledResult + CurrentValue;	If (cumulative && k < x) then UnscaledResult = UnscaledResult + 		CurrentValue;	If (CurrentValue <= EssentiallyZero) then Done = TRUE;	PreviousValue = CurrentValue;	k = k-1;  }end While;
Krok 4: Kombinovat výsledky bez měřítka:
Return UnscaledResult/TotalUnscaledProbability;
Přestože tato metoda se používá pouze pro n > = 1030, můžete použít následující dodatky k listu aplikace Excel, můžete ručně spustit tento algoritmus pro výpočet funkce BINOMDIST (3, 10, 0.3, TRUE) (v příkladu baseballové možnost 3 nebo méně přístupů do 10 pokusů pro.300 těstíčko).

Ke znázornění, zkopírujte následující tabulku, vyberte v buňce D4 v listu aplikace Excel, který jste vytvořili a potom vložit položky tak, aby vyplnil v následující tabulce D1:E15 buněk v listu.
=D5*(1-$B$2)*(A4+1)/($B$2*($B$1-A4))= D4 / $D$ 15
=D6*(1-$B$2)*(A5+1)/($B$2*($B$1-A5))= D5 / $D$ 15
1= D6 / $D$ 15
=D6*$B$2*($B$1-A7+1)/((1-$B$2)*A7)= D7 / $D$ 15
=D7*$B$2*($B$1-A8+1)/((1-$B$2)*A8)= D8 / $D$ 15
=D8*$B$2*($B$1-A9+1)/((1-$B$2)*A9)= D9 / $D$ 15
=D9*$B$2*($B$1-A10+1)/((1-$B$2)*A10)= D10 / $D$ 15
=D10*$B$2*($B$1-A11+1)/((1-$B$2)*A11)= D11 / $D$ 15
=D11*$B$2*($B$1-A12+1)/((1-$B$2)*A12)= D12 / $D$ 15
=D12*$B$2*($B$1-A13+1)/((1-$B$2)*A13)= D13 / $D$ 15
=D13*$B$2*($B$1-A14+1)/((1-$B$2)*A14)= D14 / $D$ 15
=SUM(D4:D14)
Sloupec D obsahuje pravděpodobností bez měřítka. 1 v buňce D6 je výsledek kroku 1 tohoto algoritmu. Aplikace Excel 2003 a vyšších verzích aplikace Excel výpočet položek v buňkách D7, D8,..., D14 (v tomto pořadí) v kroku 2. Aplikace Excel vypočte položky v buňkách D5 a D4 (v tomto pořadí) v kroku 3. Součet všech pravděpodobností bez měřítka se objeví v D15.

Pro výpočet pravděpodobnosti 3 nebo méně úspěchů, zadejte následující vzorec do libovolné prázdné buňky:
= SUM(D4:D7)/D15
V předchozím příkladu EssentiallyZero nezastaví kroky 2 a 3. Nicméně pokud chcete vyhodnotit funkce BINOMDIST (550, 2000, 0,3, PRAVDA), EssentiallyZero přestat krok 2 nebo 3 krok. Binomickou náhodnou proměnnou s n = 2000 a p = 0,3 má rozdělení, na které je aproximovat normálním s 600 průměr a směrodatná odchylka SQRT (2000 * 0,3 *(1 – 0.3)) = SQRT(420) = 20,5. Potom 805 je vyšší než průměr 10 směrodatné odchylky a 395 je nižší než průměr 10 směrodatné odchylky. V závislosti na nastavení EssentiallyZero, EssentiallyZero zastavit kroku 2 dříve, než dosáhnou 805 a přestat před dosažením 395 krok 3.

Závěry

Nepřesnosti ve verzích aplikace Excel, které jsou starší než Excel 2003 dojít pouze v případě, že počet pokusů je větší než nebo rovno 1030. V takových případech vrátí funkce BINOMDIST chybovou hodnotu #NUM!... v dřívějších verzích aplikace Excel protože přeteče jeden termín v posloupnosti pojmů, které jsou násobeny dohromady. Chcete-li opravit toto chování, Excel 2003 a vyšších verzích aplikace Excel použít alternativní postup, který je uveden výše v tomto článku, dojde-li toto přetečení by jinak.

Funkce CRITBINOM, HYPGEOMDIST, náhodných a NEGBINOMDIST vykazují podobné chování v dřívějších verzích aplikace Excel. Tyto funkce také vrátit správné číselné výsledky nebo #NUM! nebo #DIV/0!. Opět problémům dochází z důvodu přetečení (nebo podtečení).

Je snadné určit, kdy a jak k těmto problémům dochází. Aplikace Excel 2003 a vyšších verzích aplikace Excel použít alternativní algoritmus, který je podobný jedné BINOMDIST vrátit správné odpovědi v případech, kde dřívější verze aplikace Excel vrátit #NUM!.

Upozornění: Tento článek je přeložený automaticky

Vlastnosti

ID článku: 827459 - Poslední kontrola: 03/14/2015 05:38:00 - Revize: 7.0

Microsoft Office Excel 2007, Microsoft Excel 2004 for Mac

  • kbexpertisebeginner kbinfo kbmt KB827459 KbMtcs
Váš názor
erCopyright"> © 2016 Microsoft