В настоящее время вы работаете в автономном режиме; ожидается повторное подключение к Интернету

Понятие TCP/IP-адресации и основные сведения о подсетях

ВВЕДЕНИЕ
При настройке протокола TCP/IP на компьютере с операционной системой Microsoft Windows в параметрах настройки TCP/IP должны быть указаны IP-адрес, маска подсети и, как правило, основной шлюз.

Чтобы настроить протокол TCP/IP правильно, необходимо понимать, каким образом сетевые протоколы TCP/IP адресуются и подразделяются на сети и подсети. Данная статья предназначена для общего ознакомления с понятиями IP-сетей и подсетей. Глоссарий находится в конце статьи.
Дополнительная информация
Успех TCP/IP в качестве сетевого протокола Интернета в значительной мере объясняется его способностью соединять сети разных размеров и системы разных типов. Эти сети произвольно подразделяются на три основных класса (и несколько неосновных) с заранее определенными размерами, каждый из которых может быть разбит на более мелкие подсети системными администраторами. Маска подсети разделяет IP-адрес на две части. Одна часть идентифицирует узел, другая – сеть, к которой он принадлежит. Чтобы лучше понять принцип работы IP-адресов и масок подсети, обратите внимание на IP-адрес (адрес протокола Интернета) и его структуру.

IP-адреса: сети и узлы

IP-адрес представляет собой 32-разрядный номер, который уникально идентифицирует узел (компьютер или устройство, например, принтер или маршрутизатор) в сети TCP/IP.

IP-адреса обычно представлены в виде 4-х разрядов, разделенных точками, например 192.168.123.132. Чтобы понять использование масок подсетей для распознавания узлов, сетей и подсетей, обратите внимание на IP-адрес в двоичном обозначении.

Например, в виде разрядов, разделенных точками, IP-адрес 192.168.123.132 – это (в двоичном обозначении) 32-разрядный номер 110000000101000111101110000100. Такой номер сложно интерпретировать, поэтому разбейте его на четыре части по восемь двоичных знаков.

Эти 8-разрядные секции называются «октеты». Тогда данный IP-адрес будет иметь вид: 11000000.10101000.01111011.10000100. Этот номер ненамного понятнее, поэтому в большинстве случаев следует преобразовывать двоичный адрес в формат разделенных точками разрядов (192.168.123.132). Десятичные числа, разделенные точками, и есть октеты, преобразованные из двоичного в десятичное обозначение.

Чтобы глобальная сеть TCP/IP работала эффективно как совокупность сетей, маршрутизаторы, обеспечивающие обмен пакетами данных между сетями, не знают точного расположения узла, для которого предназначен пакет. Маршрутизаторы знают только, к какой сети принадлежит узел, и используют сведения, хранящиеся в таблицах маршрутизации, чтобы доставить пакет в сеть узла назначения. Как только пакет доставлен в необходимую сеть, он доставляется в соответствующий узел.

Для осуществления этого процесса IP-адрес состоит из двух частей. Первая часть IP-адреса обозначает адрес сети, последняя часть – адрес узла. Если рассмотреть IP-адрес 192.168.123.132 и разбить его на эти две части, то получится следующее:
   192.168.123.    Сеть              .132 узел				
или
   192.168.123.0 –  адрес сети.   0.0.0.132 –  адрес узла.				

Маска подсети

Следующий элемент, необходимый для работы протокола TCP/IP, – это маска подсети. Протокол TCP/IP использует маску подсети, чтобы определить, в какой сети находится узел: в локальной подсети или удаленной сети.

В протоколе TCP/IP части IP-адреса, используемые в качестве адреса сети и узла, не зафиксированы, следовательно, указанные выше адреса сети и узла невозможно определить без наличия дополнительных сведений. Данные сведения можно получить из другого 32-разрядного номера под названием «маска подсети». В этом примере маской подсети является 255.255.255.0. Значение этого номера понятно, если знать, что число 255 в двоичном обозначении соответствует числу 11111111; таким образом, маской подсети является номер:
   11111111.11111111.11111111.0000000				
Расположив следующим образом IP-адрес и маску подсети, можно выделить составляющие сети и узла:
   11000000.10101000.01111011.10000100 –  IP-адрес (192.168.123.132)   11111111.11111111.11111111.00000000 –  маска подсети (255.255.255.0)				
Первые 24 разряда (число единиц в маске подсети) распознаются как адрес сети, а последние 8 разрядов (число оставшихся нолей в маске подсети) – адрес узла. Таким образом, получаем следующее:
   11000000.10101000.01111011.00000000 –  адрес сети (192.168.123.0)   00000000.00000000.00000000.10000100 –  адрес узла (000.000.000.132)				
Из данного примера с использованием маски подсети 255.255.255.0 видно, что код сети 192.168.123.0, а адрес узла 0.0.0.132. Когда пакет с конечным адресом 192.168.123.132 доставляется в сеть 192.168.123.0 (из локальной подсети или удаленной сети), компьютер получит его из сети и обработает.

Почти все десятичные маски подсети преобразовываются в двоичные числа, представленные единицами слева и нолями справа. Вот еще некоторые распространенные маски подсети:
   Десятичные                 Двоичные   255.255.255.192         1111111.11111111.1111111.11000000   255.255.255.224         1111111.11111111.1111111.11100000				
Internet RFC 1878 (доступен на http://www.internic.net) описывает действующие подсети и маски подсетей, используемые в сетевых протоколах TCP/IP.

Классы сетей

Интернет-адреса распределяются организацией InterNIC (http://www.internic.net), которая администрирует Интернет. Эти IP-адреса распределены по классам. Наиболее распространены классы A, B и C. Классы D и E существуют, но обычно не используются конечными пользователями. Каждый из классов адресов имеет свою маску подсети по умолчанию. Определить класс IP-адреса можно по его первому октету. Ниже описаны интернет-адреса классов A, B и C с примером адреса для каждого класса.
  • Сети класса A по умолчанию используют маску подсети 255.0.0.0 и имеют значения от 0 до 127 в первом октете. Адрес 10.52.36.11 является адресом класса A. Первым октетом является число 10, входящее в диапазон от 1 до 126 включительно.
  • Сети класса B по умолчанию используют маску подсети 255.255.0.0 и имеют в первом октете значение от 128 до 191. Адрес 172.16.52.63 является адресом класса B. Первым октетом является число 172, входящее в диапазон от 128 до 191 включительно.
  • Сети класса C по умолчанию используют маску подсети 255.255.255.0 и имеют в первом октете значение от 192 до 223. Адрес 192.168.123.132 является адресом класса C. В первом октете число 192, которое находится между 192 и 223 включительно.
В некоторых случаях значение маски подсети по умолчанию не соответствует потребностям организации из-за физической топологии сети или потому, что количество сетей (или узлов) не соответствует ограничениям маски подсети по умолчанию. В следующем разделе рассказывается, как можно распределить сети с помощью масок подсети.

Подсети

TCP/IP-сеть класса A, B или C может еще быть разбита на подсети системным администратором. Образование подсетей может быть необходимо при согласовании логической структуры адреса Интернета (абстрактный мир IP-адресов и подсетей) с физическими сетями, используемыми в реальном мире.

Системный администратор, выделивший блок IP-адресов, возможно, администрирует сети, организованные не соответствующим для них образом. Например, имеется глобальная сеть с 150 узлами в трех сетях (в разных городах), соединенных маршрутизатором TCP/IP. У каждой из этих трех сетей 50 узлов. Выделяем сеть класса C 192.168.123.0. (Для примера, на самом деле этот адрес из серии, не размещенной в Интернете.) Это значит, что адреса с 192.168.123.1 по 192.168.123.254 можно использовать для этих 150 узлов.

Два адреса, которые нельзя использовать в данном примере, – 192.168.123.0 и 192.168.123.255, так как двоичные адреса с составляющей узла из одних единиц и нолей недопустимы. Адрес с 0 недопустим, поскольку он используется для определения сети без указания узла. Адрес с числом 255 (в двоичном обозначении адрес узла, состоящий из одних единиц) используется для доставки сообщения на каждый узел сети. Следует просто запомнить, что первый и последний адрес в любой сети и подсети не может быть присвоен отдельному узлу.

Теперь осталось дать IP-адреса 254 узлам. Это несложно, если все 150 компьютеров являются частью одной сети. Однако в данном примере 150 компьютеров работают в трех отдельных физических сетях. Вместо запроса на большее количество адресных блоков для каждой сети сеть разбивается на подсети, что позволяет использовать один блок адресов в нескольких физических сетях.

В данном случае сеть разбивается на четыре подсети с помощью маски подсети, которая увеличивает адрес сети и уменьшает возможный диапазон адресов узлов. Другими словами, мы «одалживаем» несколько разрядов, обычно используемых для адреса узла, и используем их для составляющей сети в адресе. Маска подсети 255.255.255.192 позволяет создать четыре сети с 62 узлами в каждой. Это возможно, поскольку в двоичном обозначении 255.255.255.192 – то же самое, что и 1111111.11111111.1111111.11000000. Первые две цифры последнего октета становятся адресами сети, поэтому появляются дополнительные сети 00000000 (0), 01000000 (64), 10000000 (128) и 11000000 (192). (Некоторые администраторы применяют только две из этих подсетей, используя номер 255.255.255.192 в качестве маски подсети. Для получения дополнительной информации по этому вопросу см. RFC 1878.) В этих четырех сетях последние 6 двоичных цифр можно использовать в качестве адресов узлов.

Использование маски подсети 255.255.255.192 преобразует сеть 192.168.123.0 в четыре сети: 192.168.123.0, 192.168.123.64, 192.168.123.128 и 192.168.123.192. Эти четыре сети будут иметь следующие действующие адреса узлов:
   192.168.123.1-62   192.168.123.65-126   192.168.123.129-190   192.168.123.193-254				
Не забывайте, что двоичные адреса узлов с одними только единицами и нолями недействительны, поэтому нельзя использовать адреса со следующими числами в последнем октете: 0, 63, 64, 127, 128, 191, 192 или 255.

Обратите внимание на следующие два адреса узлов: 192.168.123.71 и 192.168.123.133. Если использовать по умолчанию маску подсети класса C 255.255.255.0, оба адреса будут в сети 192.168.123.0. Однако, если использовать маску подсети 255.255.255.192, они окажутся в разных сетях: 192.168.123.71 – в сети 192.168.123.64, в то время как 192.168.123.133 – в сети 192.168.123.128.

Основные шлюзы

Связь между TCP/IP-компьютером и узлом из другой сети обычно осуществляется через устройство, называемое маршрутизатором. С точки зрения TCP/IP маршрутизатор, указанный на узле, связывающем подсеть узла с другими сетями, называется основным шлюзом. В этом разделе рассказывается, каким образом протокол TCP/IP определяет, отправлять или нет пакеты данных на основной шлюз, чтобы связаться с другим компьютером или устройством в сети.

При попытке установления связи между узлом и другим устройством с помощью протокола TCP/IP узел сопоставляет определенную маску подсети и IP-адрес назначения с маской подсети и своим собственным IP-адресом. В результате этого сопоставления компьютер узнает, для какого из узлов предназначен данный пакет – локального или удаленного.

Если в результате этого процесса назначением является локальный узел, то компьютер просто отправляет пакет в локальную подсеть. Если в результате сопоставления выясняется, что назначением является удаленный узел, компьютер направляет пакет на основной шлюз, определенный в свойствах TCP/IP. Таким образом, именно маршрутизатор отвечает за отправку пакета в правильную подсеть.

Устранение неполадок

Причиной проблем, связанных с протоколом TCP/IP, часто служит неправильная настройка трех основных элементов в TCP/IP-свойствах компьютера. Осознавая влияние ошибок в настройке TCP/IP на функционирование сети, можно решить многие распространенные проблемы протокола TCP/IP.

Неверная маска подсети. Если сеть использует маску подсети, отличную от маски по умолчанию, для своего класса адресов, а у клиента еще настроена маска подсети по умолчанию для класса адресов, связь с соседними сетями будет невозможна, но это не относится к удаленным сетям. Например, если создать четыре подсети (как в примере о подсетях), но использовать неверную маску подсети 255.255.255.0 при настройке протокола TCP/IP, узлы не смогут определить, что некоторые компьютеры находятся в других подсетях. В таком случае пакеты, предназначенные для узлов в различных физических сетях, являющихся частью одного адреса класса C, не будут отправлены на основной шлюз для доставки. Общим признаком этого является ситуация, когда компьютер может взаимодействовать с узлами в своей локальной сети и может связаться со всеми удаленными сетями, кроме тех, что расположены рядом и имеют тот же адрес класса A, B или C. Для устранения данной проблемы укажите верную маску подсети в настройке TCP/IP для этого узла.

Неверный IP-адрес. Если поместить компьютеры с IP-адресами, которые должны быть в отдельных подсетях, вместе в локальную сеть, они не смогут установить связь друг с другом. Они будут пытаться послать друг другу пакеты через маршрутизатор, который не сможет направить эти пакеты соответствующим образом. Признаком данной проблемы является ситуация, когда компьютер может установить связь с узлами в удаленных сетях, но не может взаимодействовать с некоторыми или всеми компьютерами в своей локальной сети. Для устранения данной проблемы убедитесь, что все компьютеры в одной физической сети имеют IP-адреса в одной и той же IP-подсети. Если израсходованы все IP-адреса в отдельном секторе сети, есть другие решения, которые в данной статье не описываются.

Неверный основной шлюз. Компьютер с неверно настроенным основным шлюзом сможет взаимодействовать с узлами в своем собственном сегменте сети, однако не сможет установить связь с узлами в некоторых или во всех удаленных сетях. Если одна физическая сеть имеет более одного маршрутизатора и неверный маршрутизатор настроен в качестве основного шлюза, узел сможет взаимодействовать с некоторыми удаленными сетями, но не со всеми. Эта проблема часто возникает, если в организации один маршрутизатор соединен с внутренней сетью TCP/IP, а другой — с Интернетом.
Ссылки
Два наиболее популярных руководства по TCP/IP:

TCP/IP Illustrated, Volume 1: The Protocols, Richard Stevens, Addison Wesley, 1994 (TCP/IP в иллюстрациях, раздел 1: протоколы)

Internetworking with TCP/IP, Volume 1: Principles, Protocols, and Architecture, Douglas E. Comer, Prentice Hall, 1995 (Работа в Интернете с протоколом TCP/IP, раздел 1: принципы, протоколы и структура)

Системному администратору, отвечающему за сети TCP/IP, рекомендуется иметь хотя бы одно из этих изданий.

Словарь терминов

Широковещательный адрес – IP-адрес с составляющей узла из одних единиц.

Узел – компьютер или другое устройство в сети TCP/IP.

Интернет – глобальная совокупность соединенных между собой сетей с общим диапазоном IP-адресов.

InterNIC – организация, занимающаяся администрированием IP-адресов в Интернете.

IP – сетевой протокол, используемый для отправки сетевых пакетов по сети TCP/IP или Интернету.

IP-адрес – уникальный 32-разрядный адрес узла в сети TCP/IP или общедоступной сети.

Сеть – в данной статье этот термин употребляется в двух различных значениях. Во-первых, под сетью понимается совокупность компьютеров в одном физическом секторе сети, а во-вторых, о сети говорят как о диапазоне сетевых IP-адресов, выделенном системным администратором.

Сетевой адрес – IP-адрес с составляющей узла из одних нолей.

Октет – 8-разрядное число; 32-разрядный IP-адрес состоит из четырех октетов. Значения октетов лежат в диапазоне от 00000000 до 11111111, что соответствует десятичным значениям от 0 до 255.

Пакет – единица данных, передаваемая через сеть TCP/IP или глобальную сеть.

RFC (Request for Comment) – документ, определяющий стандарты в Интернете.

Маршрутизатор – устройство, обеспечивающее обмен данными между различными IP-сетями.

Маска подсети – 32-разрядное число, используемое для выделения составляющих сети и узла в IP-адресе.

Подсеть – сеть меньшего размера, созданная путем разбиения более крупной сети на равные части.

TCP/IP – широко используемый в Интернете и других крупных сетях набор протоколов, стандартов и программ.

Глобальная сеть – крупная сеть, состоящая из совокупности более мелких сетей, разделенных маршрутизаторами. Примером очень крупной глобальной сети является Интернет.
Примечание. Это ЭКСПРЕСС-ПУБЛИКАЦИЯ, подготовленная непосредственно службой технической поддержки Майкрософт . Сведения, содержащиеся в данном документе, предоставлены в качестве отклика на возникшие проблемы. Из-за срочности в материалах могут быть опечатки, и в любое время и без уведомления в них могут быть внесены изменения. Чтобы получить дополнительные сведения, см. Условия использования.
Свойства

Номер статьи: 164015 — последний просмотр: 03/06/2013 15:24:00 — редакция: 1.0

операционная система Microsoft Windows 2000 Server, Microsoft Windows 2000 Advanced Server, Microsoft Windows 2000 Professional Edition, операционная система Microsoft Windows NT Server 3.51, Microsoft Windows NT Server 4.0 Standard Edition, операционная система Microsoft Windows NT Workstation 3.1, операционная система Microsoft Windows NT Workstation 3.5, операционная система Microsoft Windows NT Workstation 3.51, Microsoft Windows NT Workstation 4.0 Developer Edition, Microsoft Windows NT Advanced Server 3.1, Операционная система Microsoft Windows 95

  • kbnetwork kbusage KB164015
Отзывы и предложения