Forest and Tree Modeling Accuracy

Tune rxDForest parameters (speed trade-off)   (*: OSR and RRE defaults)

–      Increase nTree, e.g. to 20 or more   (OSR=500, RRE=10)*

–      Increase maxDepth, e.g. to 20 or more   (OSR=N/A, RRE=10)*

–      Decrease minSplit, e.g. to 2   (OSR=5, RRE=sqrt(N))*

–      Increase mTry, e.g. to 40 or more   (OSR/RRE=sqrt(p) or p/3)*

–      Increase maxNumBins, e.g. to 1e5 or 1e6

–      Accuracy of 81.4% with the KDD dataset using the following with a further increase to 82.3% when ntree=200:

ntree=20, mtry=40, minSplit=2, maxDepth=20, maxNumBins=1e6

  • Alternatively, run the open source randomForest routine across the Hadoop cluster using rxExec

–      See randomShrubbery in Section 6.5 of our Distributed Computing Guide

–      Adjust MR memory limits if needed since data must fit within memory on each node.

Need more help?

Expand your skills
Explore Training
Get new features first
Join Microsoft Insiders

Was this information helpful?

What affected your experience?

Thank you for your feedback!