ينطبق على
Revolution Analytics

لاستبدال كافة قيم متاح بصفر أو أي محتوى آخر من الضروري تحويل البيانات من مجموعة بيانات إدخال إلى مجموعة بيانات إخراج باستخدام دالةركسداتاستيب.برنامج نصي نموذج لاستبدال كافة متاح في ملف إكسدف "AirlineDemoSmall.xdf" فيما يلي:

# Create a data frame with missing valuesset.seed(17)myDataF <- data.frame(x = rnorm(100), y = runif(100), z = rgamma(100, shape = 2))xmiss <- seq.int(from = 5, to = 100, by = 5)ymiss <- seq.int(from = 2, to = 100, by = 5)myDataF$x[xmiss] <- NAmyDataF$y[ymiss] <- NA# Convert into a xdfmyDataNA<-file.path(getwd(),"myDataNA.xdf")trsfxdf<-rxDataStep(inData=myDataF,outFile=myDataNA,overwrite=TRUE)writeLines("\n\nXdf Generated with random NA values")print(rxGetInfo(myDataF, n = 15)$data)     # Test ouput data #### Use from here if there is an existing xdf.## replace myDataNA with your xdf file##writeLines("\n\nVariables that contains NA values (Missing Observations)")(mySum <- rxSummary(~., data = myDataNA)$sDataFrame)# Find variables that are missingtransVars <- mySum$Name[mySum$MissingObs > 0]print(transVars) #Test detected variables# create a function to replace NA vals with meanNAreplace <- function(dataList) {        replaceFun <- function(x) {              x[is.na(x)] <- replaceValue              return(x)        } dataList <- lapply(dataList, replaceFun) return(dataList)}#myDataRMV<-file.path(getwd(),"myDataRMV.xdf")       # Replace Missing Value trsfxdf<- rxDataStep(inData = myData1, outFile = myDataRMV,     transformFunc = NAreplace,      transformVars = transVars,     transformObjects = list(replaceValue = "REPLACED MISSING VALUE"),     overwrite=TRUE)writeLines("\n\nTransformed xdf with NA replaced by Value")print(rxGetInfo(myDataRMV, n=15)$data)     # Test output data

هل تحتاج إلى مزيد من المساعدة؟

الخروج من الخيارات إضافية؟

استكشف مزايا الاشتراك، واستعرض الدورات التدريبية، وتعرف على كيفية تأمين جهازك، والمزيد.