Sign in with Microsoft
New to Microsoft? Create an account.

對於所有的值為 NA 值取代零或其他內容而言,需要轉換輸入的資料集使用函式的輸出資料集的資料

rxDataStep。

取代所有的值為 NA,"AirlineDemoSmall.xdf"的 xdf 檔案中的範例指令碼如下所示︰

# Create a data frame with missing valuesset.seed(17)
myDataF <- data.frame(x = rnorm(100), y = runif(100), z = rgamma(100, shape = 2))
xmiss <- seq.int(from = 5, to = 100, by = 5)
ymiss <- seq.int(from = 2, to = 100, by = 5)
myDataF$x[xmiss] <- NA
myDataF$y[ymiss] <- NA


# Convert into a xdf
myDataNA<-file.path(getwd(),"myDataNA.xdf")

trsfxdf<-rxDataStep(inData=myDataF,outFile=myDataNA,overwrite=TRUE)

writeLines("\n\nXdf Generated with random NA values")
print(rxGetInfo(myDataF, n = 15)$data)     # Test ouput data 
##
## Use from here if there is an existing xdf.
## replace myDataNA with your xdf file
##
writeLines("\n\nVariables that contains NA values (Missing Observations)")
(mySum <- rxSummary(~., data = myDataNA)$sDataFrame)

# Find variables that are missing
transVars <- mySum$Name[mySum$MissingObs > 0]
print(transVars) #Test detected variables

# create a function to replace NA vals with mean
NAreplace <- function(dataList) {
        replaceFun <- function(x) {
              x[is.na(x)] <- replaceValue
              return(x)
        }
 dataList <- lapply(dataList, replaceFun)
 return(dataList)
}
#
myDataRMV<-file.path(getwd(),"myDataRMV.xdf")       # Replace Missing Value 
trsfxdf<- rxDataStep(inData = myData1, outFile = myDataRMV,
     transformFunc = NAreplace, 
     transformVars = transVars,
     transformObjects = list(replaceValue = "REPLACED MISSING VALUE"),
     overwrite=TRUE)
writeLines("\n\nTransformed xdf with NA replaced by Value")
print(rxGetInfo(myDataRMV, n=15)$data)     # Test output data

Need more help?

Expand your skills
Explore Training
Get new features first
Join Microsoft Insiders

Was this information helpful?

How satisfied are you with the translation quality?
What affected your experience?

Thank you for your feedback!

×