I den här artikeln beskrivs formelsyntaxen för och användningen av SKÄRNINGSPUNKT i Microsoft Excel.
Beskrivning
Beräknar punkten där en linje skär y-axeln genom att använda befintliga x-värden och y-värden. Skärningspunkten är baserad på en regressionslinje som dragits genom de kända x-värdena och de kända y-värdena. Använd funktionen SKÄRNINGSPUNKT när du vill avgöra värdet på den beroende variabeln när den oberoende variabeln är 0 (noll). Du kan också använda funktionen SKÄRNINGSPUNKT för att förutsäga det elektriska motståndet för en metall vid 0°C om datapunkterna registrerades i exempelvis rumstemperatur och högre temperatur.
Syntax
SKÄRNINGSPUNKT(kända_y; kända_x)
Syntaxen för funktionen SKÄRNINGSPUNKT har följande argument:
-
Kända_y Obligatoriskt. Detta är den underordnade uppsättningen observationer eller data.
-
Kända_x Obligatoriskt. Detta är den överordnade uppsättningen observationer eller data.
Kommentarer
-
Argumenten måste vara antingen tal eller namn, matriser eller referenser som innehåller tal.
-
Om ett matris- eller referensargument innehåller text, logiska värden eller tomma celler ignoreras dessa värden. Celler med värdet 0 tas däremot med i beräkningen.
-
Om kända_x och kända_y innehåller olika antal datapunkter eller saknar datapunkter returnerar SKÄRNINGSPUNKT felvärdet #Saknas!.
-
Ekvationen för regressionslinjens skärningspunkt är:
där lutningen (b) är beräknad till:
och där x och y är sampelmedelvärdena MEDEL(kända_x) och MEDEL(kända_y).
-
Den underliggande algoritmen som används i funktionerna SKÄRNINGSPUNKT och LUTNING är inte samma som den underliggande algoritm som används i funktionen REGR. Skillnaden mellan dessa algoritmer kan leda till olika resultat vid obestämbara och parallella data. Exempel: om datapunkterna för argumentet kända_y är 0 och datapunkterna för argumentet kända_x är 1:
-
SKÄRNINGSPUNKT och LUTNING returnerar felet #DIVISION/0!. Algoritmen bakom SKÄRNINGSPUNKT och LUTNING har utformats att söka efter ett enda svar, och i det här exemplet kan det finnas mer än ett svar.
-
returnerar REGR värdet 0. Algoritmen bakom REGR har utformats att returnera rimliga resultat för parallella data, och i det här exemplet finns det minst ett svar.
-
Exempel
Kopiera exempeldata i följande tabell och klistra in dem i cell A1 i ett nytt Excel-kalkylblad. När du vill att formlerna ska visa resultat markerar du dem, trycker på F2 och sedan på Retur. Om det behövs kan du justera kolumnbredderna så att alla data visas.
|
Känt y-värde |
Känt x-värde |
|
|
2 |
6 |
|
|
3 |
5 |
|
|
9 |
11 |
|
|
1 |
7 |
|
|
8 |
5 |
|
|
Formel |
Beskrivning |
Resultat |
|
=SKÄRNINGSPUNKT(A2:A6;B2:B6) |
Punkten där en linje skär y-axeln när x- och y-värdena ovan används |
0,0483871 |